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Abstract. We recall the properties of the intelligent (and quasi-intelligent) spin states introduced
by Aragoneet al (1974J. Phys. A: Math. Gen.7 L149, 1976J. Math. Phys.17 1963). We use
these states to construct families of coherent wavepackets (WP) on the sphere and we sketch the
time evolution of these WP for a rigid-body molecule.

1. Introduction

The eigenstates of the square of the angular momentum operatorL2 which are also eigenstates
of Lx + iηLy , whereη is a real parameter, have been calledintelligent spin states[1] and have
been the subject of intensive analytical studies [2,3]. However, at least to our knowledge, one
does not find in the literature any discussion of their geometrical interpretation and of their
utility in the construction of angular momentum coherent states. On completion of a recent
paper [4] on the time evolution of coherent states built from a subclass of those states, we came
to the conclusion that such a discussion still had to be presented.

In this short paper we first show in section 2 that the parameterη, enables one to define
squeezed states on the sphere i.e. states for which the uncertainties1L2

x and1L2
y can be

varied at will. It is, however, for real values ofη that the product of the uncertainties has a
minimum value. In section 3 we show that the states can be classified into three categories, a
result already found in [3], and that the well known Radcliffe’s states belong to one of these
categories. In section 4 we study the angular localization and the partial wave expansion of
a particular class generated from an exponential coherent state on the sphere. This state was
introduced by us in [4]. Finally, in section 5 we study the time evolution of this particular set
of states in the same fashion as [4] i.e. assuming that the wavepackets (WP) evolve with the
Hamiltonian of a rigid body with moment of inertiaJ :

H = h̄2

2J
L2. (1)

In particular, we show that the scenario of fractional revivals found in [8] is well exhibited by
the family of WP studied in section 4.
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2. Squeezed states on the sphere

Let us enumerate a few general properties of the states|w, η〉which are eigenstates ofLx+iηLy
with a complex value ofη. In this first part there is no need to assume that they are eigenstates
of L2. These states are the normalized states which obey the equation:

(Lx + iηLy)|w, η〉 = w|w, η〉. (2)

It is a simple exercise, as already discussed in [5, 6] to prove equations (3)–(7). First of
all

|η|2 = 1L2
x

1L2
y

(3)

i.e. |η| can be called the squeezing parameter (with the definitions1L2
i = 〈L2

i 〉 − 〈Li〉2, i =
x, y). The phaseα of η determines the ratio of the average value of the anticommutator ofLx
with Ly to the average of their commutator since

tanα = 〈{Lx,Ly}〉 − 〈Lx〉〈Ly〉〈Lz〉 . (4)

Finally, the product of the uncertainties is given by:

1L2
x1L

2
y =

1

4
[〈Lz〉2 + |〈{Lx,Ly}〉 − 〈Lx〉〈Ly〉|2] = 1

4

〈Lz〉2
cos2 α

. (5)

The average values ofLx andLy are both fixed by the parameterη and the eigenvaluew by:

〈Lx〉 = ηw∗ +wη∗

η + η∗
〈Ly〉 = 1

i

w − w∗
η + η∗

. (6)

The eigenstates corresponding to the real parameterη satisfy the important minimum
uncertainty relation from which [1] was initiated:

1L2
x1L

2
y = 1

4〈Lz〉2. (7)

3. Classification of the squeezed states

The eigenvalue,w, can be obtained very simply in the basis of eigenstates ofL2 with the
eigenvaluel(l + 1) if one uses the observation [3] that, within a constant factor

√
1− η2, the

operatorLx + iηLy is one of the three generators of anSU(2) algebra. The set of operators
satisfying this algebra is defined as

L3 = Lx + iηLy√
1− η2

L± = ±
(
ηLx + iLy√

1− η2

)
− Lz. (8)

Therefore, there are 2l+1 solutions to equation (2); instead ofw one simply uses the eigenvalue
of L3 with k = −l, . . . ,+l and the formula

w = k
√

1− η2. (9)

Let us denote by|l, k, η〉 the eigenstates solutions of equation (2) in the basis whereL2 is
diagonal. (Note thatk is the eigenvalue ofL3 and not ofLz.) Using (9) one obtains two
expressions for the average ofLx andLy in the particular case of a real value ofη:

〈Lx〉 = k
√

1− η2 〈Ly〉 = 0 if |η| < 1 (10)

〈Lx〉 = 0 〈Ly〉 = k
√
η2 − 1 if |η| > 1. (11)
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The case with|η| = 1 is obviously singular but there is a unique well known solution for which
w = 0. One then has

(Lx ± iLy)|l, k = ±l, η = ±1〉 = 0 (12)

and |l,±l, η = ±1〉 coincide with the eigenstates ofLz with eigenvalues±l. If η takes a
complex value,〈Lx〉 and〈Ly〉 are both nonzero but are both proportional tok. The intelligent
spin states are the solutions of equation (2) with average values given by (10) or (11) and
which moreover satisfy equation (7). Thegeneralized intelligent statesor thequasi-intelligent
spin stateswhich were respectively defined in [1, 3] are the solutions of equation (2) with a
complex value ofη for which both averages are nonzero and to which equation (5) must be
applied with a nonzero value ofα. In both cases it is sufficient to consider the interval|η| < 1
andα ∈ [0, π/2].

Let us now classify those states according tok as follows:

(i) The states withk = 0 for which〈Lx〉 and〈Ly〉 are zero and only〈Lz〉 is nonzero.
(ii) The states withk = ±l which are very particular as we show below.

(iii) The states with intermediate values ofk.

In order to justify this classification we have to express〈Lz〉 as

〈Lz〉 = η〈L3〉 + i
√

1− η2〈Ly〉 − 〈L+〉. (13)

Except for the casek = ±l the average of the operatorLx + iηLy defined by equation (8)
is nonzero. This average can be calculated from the works of [1, 3]. It is generally the ratio
between two polynomials of the parameterη, the degree of which increases withl. Therefore,
the angle between the vector〈 EL〉 and theOz-axis is not a simple function ofη for general
values ofk andl and there is no simple geometrical meaning of this angle. Fork = ±l such
an interpretation can indeed be found. Let us defineη in terms of two anglesθ0 andφ0 by

η = tanφ0 + i cosθ0

cosθ0 tanφ0 + i
. (14)

With this value ofη the equation

(Lx + iηLy)|l, l, η〉 = l
√

1− η2|l, l, η〉 (15)

can be written simply as

( EL · El)|l, l, η〉 = l|l, l, η〉 (16)

where the vectorEl is the unit vector in the direction of〈 EL〉 which is such that

〈Lz〉 = l sinθ0 cosφ0 〈Ly〉 = l sinθ0 sinφ0 〈Lz〉 = l cosθ0. (17)

Equation (17) expresses the fact that|l, l, η〉 are simply spherical harmonics,Y ll , in a system
of axis whereOz is along the vectorl. These states are generally called Radcliffe’s states [7].
Let Eu, Ev, El be three unit vectors forming an orthogonal direct system. One has also

( EL · (Eu + iEv))|l, l, η〉 = 0. (18)

In this rotated system of coordinates the parameterη is equal to one†!
For k 6= ±l the transformation which enables one to build up the intelligent or quasi-

intelligent spin states from the usual spherical harmonics is not a rotation. This remark was
already formulated long ago in [3] at the same time as the previous remark on the equivalence
of Radcliffe’s states with the states withk = ±l.
† One also finds other cases where the states coincide with spherical harmonics with an axis of quantization different
fromOz: it is theOx-axis forη = 0 and forη = i|η| this axis hasθ = π/2 and sinφ = −|η|/

√
1− η2.
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4. Study of a family of exponential WPs

Let us now discuss the properties of WP built from intelligent or quasi-intelligent spin states
with the same value ofw, i.e. ofk, and containing many different values ofl. The consideration
of such admixtures indeed enables us to modify, at will, the angular spread keeping either (5) or
(7), with the allowance, provided by equation (3), thatη is an adjustable squeezing parameter.
These WP can be expressed either in the basis|l, k, η〉 with coefficientscl(k, η) as

|9ηk〉 =
∑
l

cl(k, η)|l, k, η〉 (19)

or in the basis of ordinary spherical harmonics with coefficientsblm(k, η) as

9ηk(θ, φ) =
∑
lm

blm(k, η)Y
l
m(θ, φ). (20)

From now on we will discuss the properties of families of states generated from aparentstate
previously investigated by us in [4] and and called theexponential coherent state. For a real
value ofη this state depends on a single parameterN , and a function ofθ andφ calledv. Its
expression is:

9η0(θ, φ) =
√

N

2π sinh 2N
eNv =

√
N

2π sinh 2N
eN sinθ(cosφ+iη sinφ). (21)

The probability density which is associated depends only onN . It is maximum within a
solid angle symmetric around theOx-axis and the width of this solid angle is of the order
4π/(4N + 1). Also, the average〈Lz〉 obeys the following formula

〈Lz〉 = η(N coth(2N)− 1
2)

N�1−→ η(N − 1
2). (22)

We have shown, in [4], how to obtain this WP from a three-dimensional harmonic oscillator
coherent state. As stated in [4], all the WP havek = 0. Our purpose is now to construct for
real or complexη families of WP having increasing values ofk using (21) for the parent state.
We would like to study the angular spread as a function ofk and coherence properties of the
following family:

9η0 L+9η0 L2
+9η0, . . . , Lk+9η0. (23)

These states are all solutions of equation (2) with respective eigenvalues 0,
√

1− η2, 2
√

1− η2,
. . . , k

√
1− η2, . . . . If η is real they all satisfy equation (7) while equation (5) is satisfied ifη

is complex. ApplyingL+ to the argumentv of (21), one obtains a functionv+ defined by

v+ = L+v = 1

2
(cosθ − η)

√
1 +η

1− η −
1

2
(cosθ + η)

√
1− η
1 +η

+ (η cosφ + i sinφ) sinθ. (24)

But a second application leads to the following property:

L+v+ = L2
+v = 0. (25)

The set defined by (23) can then be simply expressed in terms of9η,0 and of powers ofv+ as

9η0 v+9η0 v2
+9η0, . . . , v

k
+9η0. (26)

In this manner one sees that the Gaussian will be dominant for anyk in such a way that the
WP will be highly concentrated on the sphere even for highk. The action of the operator
Lk+ is, however, very different if one analyses the decomposition of WP into partial waves
according to the expansion (20). Indeed, it suppress all the partial waves withl < k, it moves
the distribution towards the values withm > l and also, by the change in the normalization,
it increases the weight of the higher partial waves. However, if one uses not the basis of the
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Figure 1. Distribution of weights|blm|2 for the WP withN = 20,η = 0.5 and three values ofk.
The cases withk = 10 and 20 are plotted both in lines and impulses.

usual spherical harmonics (20) but the basis of the intelligent spin states one can draw benefit
from the fact that we have in this basis the equation

L+|l, k, η〉 =
√
l(l + 1)− k(k + 1)|l, k + 1, η〉 (27)

which shows that the relative phases of the states present in (19) are not affected. Therefore
the states will keep their coherence property as a function ofk.

To be complete, below we give the expression ofblm(0, η) from which a recurrence can
easily be built to find the coefficients fork > 0. One found in [4] that for real values ofη

blm =
√

2N

sinh(2N)

∑
l1l2

(−1)l2
(N(1 +η))l1(N(1− η))l2√

(2l1)!(2l2)!

〈l1l200|l0〉〈l1l2l1− l2|lm〉√
(2l + 1)

. (28)

For complexη the square root in front must be changed.
The distribution of the coefficientsblm is presented in figure 1 forη = 0.5, N = 0 and

k = 0, 10 and 20. A very large shift of the distribution of thebs towards the higherl andm > l

is clearly observed whenk increases as well as an increase in the spread of the values ofm.
Sections of the WP at their maximum are presented in figure 2 which shows the angular

shape of the WP. Apart from a small movement towards smaller values ofθ whenk increases
the WP is almost as strongly localized fork = 20 as it was fork = 0 for η = 0.5 andα = 0,
as well as forα 6= 0.

Despite the strong angular concentration of the WP fork = 20, the calculation of〈Lz〉
provides very large values for the product of the uncertainties. This average value is shown in
figure 3 forη = 0.5 at the same time as〈L2〉.

5. Fractional revivals for the case of a rigid rotation

The time evolution of the WPs described above can now be studied assuming the Hamiltonian
(1). This assumption was applied in [4] for the state (21), i.e. the state representing a rigid
heteronuclear molecule and we have made an extensive study of its time evolution. The
fractional waves that one obtains as time proceeds are obtained from the initial WP by
multiplying theblm by exp(−iIω0ts) (see [4]) whereω0 is the frequency of periodicity of
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(a)

(b)

Figure 2. Sections, inθ andφ directions, through the WP maxima at timet = 0 for WP with
N = 20,η = 0.5 (a), and those withN = 20,η = exp(iα), α = π/4 (b) and fourk values. In (a)
all sections inφ are shifted fromφ = 0–5 for more convenient presentation.

Figure 3. Expectation values ofL2 (left scale) andLz (right scale) operators for WP withN = 20,
η = 0.5 as functions ofk.

the rigid rotor and wherets is a fractional time. It is this change ofts which allows one to
obtain a rich variety of fractional waves on the sphere fork = 0. Depending on the value of
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Figure 4. Shapes of WP withN = 20 at fractional revival timet = ( 1
10)Trev for realη = 0.5 (left

column), andη = exp(iα), α = π/4 (right column) andk = 0, 5, 10, 20 as functions of angular
variables for a rigid molecule. Clones and mutants are clearly visible. Note that with increasingk

the classical trajectory becomes more and more tilted with respect to theOxy-plane.

η (only real values ofη were considered in [4]) the WP exhibits a rich scenario of fractional
revivals in the way described in [8], the origin of which being traced to the quantum mechanical
spreading. The parameterη allows one to control the relative spread of each of the angular
variables. For fractional time(m/n)Trev, whereTrev is a common revival time, the WP is
subdivided into a certain number of WP (n if n is odd,n/2 in the even case) the shape of which
depend strongly on the value ofη. For the caseη = ±1 the fractional WP are clones of the
initial WP. For different values their shape changes (we have called these WPmutants). If N
is large enough the fractional WP are located around different directions on the sphere and do
not spatially interfere much for low enough values ofn (n < 8 for N = 20). We interpret
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these properties as a manifestation of a robust virtue of coherence of the WP. In figure 4 the
revivals of various WP havingk = 0, 5, 10 and 20 are presented form/n = 1

10, such a time has
been chosen as a typical example. There we should observe five WP according to [8]. These
WP are always very well separated from each other, again there is no significant difference
between the WP constructed from intelligent spin states and those built from quasi-intelligent
ones.

6. Conclusions

The conclusion of this paper is that there exists numerous possibilities of the construction of
angular coherent states using the properties of the intelligent spin states. For a system with
a Hamiltonian quadratic inI [I (I + 1) spectrum] these WP spread on the sphere but there
is a well identified mechanism of fractional revivals that produce a set of well concentrated
mutants. For rotators which are not quadratic the scenario is valid during a limited time. This
is the case of nuclei for which we are making a parallel study [9].
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